StemCell.Directory
Menu
  • Home
  • Blog
  • Connect
  • FAQ
  • Submit Event
  • Submit Listing
StemCell.Directory
Menu
  • Home
  • Blog
  • Connect
  • FAQ
  • Submit Event
  • Submit Listing

UMN researchers use 3D technology to identify optimal stem cells for transplantation

Published by GP On October 6, 2018

Groundbreaking science and technology come together to find potential answers for conditions such as muscular dystrophy.

Muscular dystrophy is a condition which causes muscle weakness and decreased mobility, caused by defects in a person’s genes. There is no cure. University of Minnesota Medical School researchers have combined technology with science to discover a stem cell population that could hold promising answers for patients in the future.

Skeletal muscle is the most abundant tissue in the body and is composed of several different types of cells including satellite cells. Satellite cells are predominantly responsible for muscle regeneration, during normal day to day activities, as well as during severe muscle diseases like muscular dystrophy.

For many stem cells, such as bone marrow and neural stem cells, for example, the area known as vascular niche has been well studied. However, that has not been the case for muscle stem cells, until now. Atsushi Asakura, PhD, Associate Professor in the Department of Neurology, University of Minnesota Medical School and Mayank Verma, PhD, medical student at the University of Minnesota found a way to study this stem cell niche, as explained in their paper “Muscle Satellite Cell Cross-Talk with a Vascular Niche maintains quiescence via VEGF and Notch Signaling” recently published in Cell Stem Cell.

Verma and Asakura studied the stem cells and blood vessels in large volumes in three dimensions using methods developed in the lab. This is the first time that imaging such as this has been applied so that the interaction between the two populations could be looked at from all different levels in a large number of cells. This showed them that a subset of these stem cells were located close to the blood vessels and were likely to be the more potent stem cell population in the muscles that are maintained in the long run.

“This could be very important for learning more about the role of these stem cells in aging and muscular dystrophy, and treatments in the future,” said Asakura.

The University Imaging Centers were very instrumental in the development of the imaging techniques as well as the analysis of the data which allowed researchers to view the satellite cells and blood vessels in new and groundbreaking ways.

###

About the University of Minnesota Medical School:

The University of Minnesota Medical School is at the forefront of learning and discovery, transforming medical care and educating the next generation of physicians. Our graduates and faculty produce high-impact biomedical research and advance the practice of medicine. Visit med.umn.edu to learn how the University of Minnesota is innovating all aspects of medicine.

This work was supported by the Greg Marzolf Jr. Foundation Association Franc¸ aise contre les Myopathies, the National Institutes of Health (T32GM008244, F30AR066454, R01AR062142 and R21AR070319), and the Muscular Dystrophy Association (MDA241600).

  • Share
Categories: News, Stem Cells Tags: muscular dystrophy
← PreviousNext →

Subscribe To Our Newsletter

Subscribe to get latest news from site

Submit Your Listing

Get maximum online exposure for your business by submitting a listing on our directory. Benefit from our audience of visitors who seek the services and products you're promoting. Click here, Submit Listing.

Marketplace

“Adspace

About StemCell.Directory

StemCell.Directory is a Fully Searchable, Human-edited Directory for the entire Stem Cell Industry. We invite all Doctors, Researchers, Corporations, and Associations to join our ever-growing community. Start here

Tags

video UCLA teeth stem cells skin cells reprogramming pluripotent NIH MS mesenchymal liver leukemia ISCO iPSC iPS heart embryonic diabetes cornea cord-blood CIRM cancer bone-marrow ALS

DISCLAIMER

StemCell.Directory disclaims any liability, loss, or risk, directly or indirectly of the application of any of the contents found on this web site. Always consult a medical professional regarding treatment.

© 2023 Stem Cell Directory | Built by Brainguzzle

Sign In

Forgot your password?

Forgot password

Inquiry for
UMN researchers use 3D technology to identify optimal stem cells for transplantation

x