StemCell.Directory
Menu
  • Home
  • Blog
  • Connect
  • FAQ
  • Submit Event
  • Submit Listing
StemCell.Directory
Menu
  • Home
  • Blog
  • Connect
  • FAQ
  • Submit Event
  • Submit Listing

Stem cell-derived kidneys connect to blood vessels when transplanted into mice

Published by GP On November 20, 2015

* After researchers transplanted kidney tissue generated from human induced pluripotent stem cells into a mouse kidney, the animal’s blood vessels readily connected to the human tissue.

Washington, DC (November 19, 2015) — Various research groups are collecting different types of cells and turning them into induced pluripotent stem (iPS) cells that can then generate diverse types of cells and tissues in the body. Now investigators have transplanted kidney tissue made from human iPS cells into a mouse kidney, and they found that the animal’s blood vessels readily connect to the human tissue. The advance, which marks an important step towards creating a urine-producing kidney through regenerative medicine, is described in a study appearing in an upcoming issue of the Journal of the American Society of Nephrology (JASN).

In previous work, Ryuichi Nishinakamura, MD (Kumamoto University, in Japan) and his colleagues created 3-dimensional kidney structures from human iPS cells. In this latest work, by engineering the iPS cells to express green fluorescent protein so that they could be visualized and tracked, the researchers found that the iPS cell-derived kidney tissues were similar to those found normally in the body. Also, the team successfully transplanted the kidney structures into the kidneys of mice, where they matured further around adjacent blood vessels and formed a filtration membrane structure similar to that of a normal kidney.

“We are now working to create a discharge path for the kidney and combine it with our findings,” said Prof. Nishinakamura.

In addition to their potential for regenerative medicine, such kidney structures may help scientists model kidney development, investigate the causes of kidney disease, and assess drugs’ toxicity to the kidneys.

  • Share
Categories: News, Stem Cells Tags: kidney
← PreviousNext →

Subscribe To Our Newsletter

Subscribe to get latest news from site

Submit Your Listing

Get maximum online exposure for your business by submitting a listing on our directory. Benefit from our audience of visitors who seek the services and products you're promoting. Click here, Submit Listing.

Marketplace

“Adspace

About StemCell.Directory

StemCell.Directory is a Fully Searchable, Human-edited Directory for the entire Stem Cell Industry. We invite all Doctors, Researchers, Corporations, and Associations to join our ever-growing community. Start here

Tags

video UCLA teeth stem cells skin cells reprogramming pluripotent NIH MS mesenchymal liver leukemia ISCO iPSC iPS heart embryonic diabetes cornea cord-blood CIRM cancer bone-marrow ALS

DISCLAIMER

StemCell.Directory disclaims any liability, loss, or risk, directly or indirectly of the application of any of the contents found on this web site. Always consult a medical professional regarding treatment.

© 2023 Stem Cell Directory | Built by Brainguzzle

Sign In

Forgot your password?

Forgot password

Inquiry for
Stem cell-derived kidneys connect to blood vessels when transplanted into mice

x